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ABSTRAcT

Early experiences can modify regulatory factors affecting gene expression in such a way that, 
although the DNA sequence itself is not changed, the individual’s physiology and behavior is 
substantially influenced. In some instances these epigenetic effects are exerted upon exposure, 
while in other instances they are transmitted across generations via incorporation into the 
germline. Examples of both types of epigenetic effects are presented. First, experience with 
siblings (littermates) organizes behaviors and their underlying neural substrates in such a way 
that, as adults, rats and knockout mice behave differently. Second, exposure to the fungicide 
vinclozolin early in pregnancy imprints the male lineage in such a manner that rats exhibit 
distinct behavioral profiles as well as unique patterns of gene expression in relevant brain 
regions. Taken together, this work demonstrates that present and past environments alike 
modify both social and affiliative related behaviors and their related metabolic activity in spe-
cific brain nuclei as well as influencing the abundance of specific genes altering the epigenome 
in the target brain areas.
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intRoduction

Many psychiatric disorders exhibit significant 
gender differences in relative risk level and severity. 
In women, the incidence of some disorders (e.g. eating 
disorders, major depressive disorder, obsessive-com-
pulsive disorder, posttraumatic stress disorders, anxi-
ety and panic disorders, seasonal affective disorder, 
and Alzheimer’s disease and dementia) is two-fold 

higher or more than in men. Males are at higher risk 
for early onset disorders such as autism and schizo-
phrenia. It is clear that in some manner reproductive 
and adrenal hormones play a role in the development 
and display of these disorders since, in many instances, 
the sex differences manifest at puberty. In some cases 
the relationship is clear-cut, as is the case with stress 
hormones and anxiety-related behaviors. However, a 
direct causative (vs. consequential) nature of sex ster-
oid hormones has been more difficult to demonstrate 
even though, for example, in the case of schizophrenia 
in women, worsening of symptoms is experienced dur-
ing pregnancy, postpartum, and perimenopause.1-3 A 
clearer picture emerges when we consider individuals 
exposed to exogenous steroids or their mimics. It is 
well known that conditions such as congenital adrenal 
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hyperplasia, resulting in elevated androgen levels, 
influence subsequent gender identity and role.4,5 Even 
modestly higher in utero androgen exposure during 
fetal life has detectable effects in later adulthood. For 
example, a female dizygotic twin with a twin brother, 
as compared with a female dizygotic twin with a twin 
sister, exhibits more risk-taking behavior, has a more 
masculine pattern of cerebral lateralization, and is 
prone to aggression.6-8 Both men and women exposed 
to diethylstilbestrol (DES) in utero (hence having 
a body burden of the chemical) are more prone to 
depression compared to their unexposed siblings.9-11 
Indeed, an issue of national concern is the significant 
environmental exposure to common-use chemicals 
in the household, a factor suggested as contributing 
to the increased incidence of affective disorders in 
the general population.12

When and how are these gender biases established? 
Hormones and genotype determine an individual’s 
responses to experiences throughout the life cycle as 
well as the susceptibility to developing disorders.13-

15 Embryonic development is the time of maximal 
neuronal and behavioral plasticity, although the 
individual’s capacity to respond to environmental 
change or insult with heritable phenotypic variation 
at a later stage is also possible. For the purposes of 
this essay, plasticity is defined as the ability of the 
genotype to produce different phenotypes in response 
to different environments. In both instances, suites 
of genes underlie the fundamental plasticity of an 
organism, particularly during development or life 
history transitions. Exploration of such gene-envi-
ronment interactions furthers our understanding 
of how the environment influences the relationship 
between genotype and behavior during sensitive 
developmental periods.

Affective disorders result from the interplay of 
environmental, genetic, and epigenetic factors dur-
ing neural development, but exactly how this comes 
about is relatively unknown.16,17 Recent studies at both 
the molecular and organismal levels indicate that the 
origin of such effects may be in previous generations. 
That is, experiences of earlier generations modify 
regulatory factors affecting gene expression in such a 
way that the DNA sequence itself is not changed but 
the individual’s physiology and behavior are substan-
tially influenced. Of particular interest is how such 

effects might be transmitted across generations. First, 
it is important to distinguish mitotic (non-germline) 
from meiotic (germline) epigenetic imprints.

context-dependent vs. GeRmline-
dependent epiGenetic modifications

Transgenerational effects can be observed if the 
environmental factors that bring about the epigenetic 
modification simply continue to persist.18,19 For ex-
ample, if the diet, behavior (see below), or environ-
mental toxicant (e.g. lead) continues to be present in 
the environment, then epigenetic modification will 
be manifested in each generation.20,21 This situation 
leads to readily available therapeutic venues such as 
those providing methyl donors to the diet or directly 
to the young, or simply removing the environmental 
toxicant.22-24 Hence, the environment can induce epial-
leles, but this environmentally induced epigenetic state 
can be reversed by a different environmental factor. 
I term this mitotically based transgenerational effect 
‘Context-Dependent’ epigenetic change and the best 
example comes from the work of Meaney and col-
leagues.18,23,25,26 In a long series of elegant studies, this 
group has demonstrated that nature and the amount 
of care a pup receives from the mother modulates its 
reaction to stress later in life largely through effects on 
the glucocorticoid receptor (GR) in the hippocampus. 
This maternal effect can cross generations, provided 
that the pup’s experience occurs in the first week of 
life. Recently, this group has documented that infu-
sion of methionine, a histone deacetylase inhibitor, 
into the hippocampus can also reverse these events. Is 
there a counterpart in humans? Caspi and colleagues 
have demonstrated how the rearing environment can 
overcome the influence of genotype in the etiology 
of violent behavior.27,28

Germline-Dependent epigenetic modification is 
fundamentally different than Context-Dependent epi-
genetic modification.18 This type of transgenerational 
epigenetic imprint is mediated through the germline 
and tends to be sex-linked. That is, an epigenetic 
modification is transferred to subsequent generations 
because the change in the epigenome is incorporated 
into the germline. Thus, the effect is manifested in 
each generation in the absence of the causative agent. 
In such instances the DNA methylation of heritable 
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epialleles is passed through to subsequent generations 
rather than being erased as occurs normally during 
gametogenesis and shortly after fertilization. It should 
be emphasized that Germline-Dependent epigenetic 
modifications are not equivalent to genomic imprint-
ing in which genes are monoallelically expressed in a 
parent-of-origin dependent manner.29,30 In the latter 
case of genomic imprinting, subsets of genes are si-
lenced and influence development; silencing of genes 
is erased and not transmitted to the next generation. 
To date, there is but a single example of Germline-
Dependent epigenetic modification on behavior.

epiGenetics and mental health

A growing body of information suggests that 
epigenetic effects might extend to gender differences 
in brain and behavior.18,31 For example, Woolf and 
Grossman and colleagues have presented, compel-
ling arguments that for certain psychopathological 
conditions (schizophrenia, fragile X syndrome, fetal 
alcohol syndrome, and depression), early develop-
mental events canalize the individual into an ever-
narrowing range of responses.32,33 It is significant that 
methylation has been implicated in the etiology of all 
of these disorders.

More than 70 years of research with animal models 
has demonstrated that gonadal and adrenal hormones 
organize the brain perinatally in such a way that 
the individual’s perception, behavior, and learning 
abilities are modified. Not only does the nature and 
amount of hormone affect individual development 
but also the timing of hormone exposure is impor-
tant. However, while the principle of critical periods 
of hormone sensitivity is well established in animal 
studies, the data on human behavior is only now being 
collected.34 Perhaps the best studied phenomenon is 
that of stress and how, if it is sustained, it can lead 
to impaired immunity, disease, and neurological 
changes characteristic of major depressive illness and 
particularly chronic anxiety disorders.35-37 Chronic 
restraint stress in rats has been a standard paradigm 
for studying such effects on physiology, brain, and 
behavior. For example, six hours daily of immobi-
lization restraint for three weeks results initially in 
elevated corticosterone levels but after 21 days, the 
hypothalamus-pituitary-adrenal (HPA) axis shows ad-

aptation and levels are back to normal. However, there 
is a progressive atrophy of the dendrite length and 
branching of pyramidal neurons in the CA3 region, a 
process mediated by corticosterone potentiating the 
release and postsynaptic activity of excitatory amino 
acids from adjacent mossy fiber terminals arising from 
the granule neurons in the dentate gyrus and acting 
via N-Methyl-D-Aspartate (NMDA) receptors.38 
Conversely, there is an increase in dendritic spine 
density of neurons in the basolateral amygdala and 
Medial Prefrontal Cortex (mPFC), and decreased 
neurogenesis in the dentate gyrus.39-43 In addition 
to suppressing proliferation of new cells, chronic 
restraint markedly increases polysialic acid, a devel-
opmentally regulated carbohydrate associated with 
Neural Cell Adhesion Molecule (NCAM).44 Stressed 
rats also exhibit a variety of specific cognitive deficits 
in spatial learning and memory as well as increased 
anxiety-like and agonistic behavior.39,45,46

The effects of stress appear to vary depending 
upon the sex of the individual and when they occur.47 
For the purposes of this essay, I will only consider the 
literature on males. In males, the effects of chronic 
stress early in development tend to be irreversible, 
resulting in permanent structural changes in the 
hippocampus and altered adult sociosexual and anxi-
ety-related behaviors, while those experienced as an 
adult can be reversed. If the stress occurs during the 
peripubertal-juvenile transition, the effects are simi-
lar to the early effects, if not exaggerated.48 In rats, 
chronic restraint influences serotonin and dopamine 
activity in CA3 of the hippocampus, dopamine and 
its metabolites in CA1 of the hippocampus as well 
as the mPFC, and dopamine and its metabolites in 
the basolateral amygdala.

The context in which the stress is experienced 
is also important, perhaps not surprisingly as rats 
and humans are social animals. For example, stress 
decreases neurogenesis in the dentate gyrus of male 
rats that are individually housed but not in those that 
are socially housed.49 In humans, some disorders are 
precipitated by stress, which itself alters endocrine 
state. For example, only some of the pregnant women 
exposed directly to the World Trade Center collapse 
developed Posttraumatic Stress Disorder (PTSD).50 
These women and their babies had lower cortisol levels 
compared with those mothers who did not develop 
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More relevant to this discussion, a comparison of 
two MZ twin pairs, one concordant for the diagnosis 
of schizophrenia and the other discordant, revealed 
larger epigenetic difference in the regulatory region 
of the DRD2 gene.56

neuRal mechanisms undeRlyinG 
sociosexual and emotional behavioRs

There is now a substantial body of literature indi-
cating that in mammals, specific nuclei in the limbic 
and forebrain areas are critical to the display of repro-
ductive, agonistic, and emotional behaviors.64-71 These 
nuclei, which include the lateral septum, amygdala, 
hippocampus, bed nucleus of the stria terminalis, 
medial preoptic area, anterior hypothalamus, and 
ventral tegmental area, are interconnected, contain 
steroid hormone receptors, and tend to be sexually 
dimorphic in their volume and synaptic organization 
as a consequence of the nature and frequency of sex 
steroid hormones secreted perinatally. Ablation of 
individual nuclei often leads to diminution or even 
abolition of social and reproductive behaviors, whereas 
stimulation in individuals gonadectomized in adult-
hood restores these behaviors. Stress influences cogni-
tion and anxiety, effects that are sexually dimorphic 
and hormonally modulated. Moreover, the functional 
neuroendocrinology of brain areas associated with 
stress have been delineated (see above and below). 
The display of these complex behaviors is reflected 
in increased expression of immediate early genes as 
well as electrophysiological and metabolic activity in 
multiple nuclei that can form an integrated neuronal 
circuit. This has led to increased appreciation that 
social and reproductive behaviors “emerge from the 
activity of a unitary neuroanatomical framework” in 
the brain.72 The Crews lab has been at the forefront 
of developing analytic methods for evaluating change 
in such networks.73

context-dependent epiGenetic chanGes 
in bRain and behavioR

Life history is continuous but can be viewed as 
the cumulation of discrete segments; each period 
emerges from what goes before and, at the same 
time, sets the stage for what follows. Although the 
divisions are somewhat arbitrary and some traits can 

PTSD. The issue here is whether stress potentiates 
a predisposition to develop mental disorder(s). A 
similar point has been raised by Petronis and col-
leagues regarding pre- and perinatal environmental 
risks for Attention-Deficit Hyperactivity Disorder 
(ADHD).5,51

It is now well accepted that life history events in-
teract with genetic predispositions to induce disease. 
For example, Eker rats carry a germ line defect in the 
tuberous sclerosis complex 2 tumor-suppressor gene 
and approximately 65% develop hormone-dependent 
uterine leiomyomas.52 Exposure of females to DES 
on days 3-5 after birth increases the tumor-suppres-
sor-gene penetrance to more than 90%. In principle, 
stress, which has been shown to have organizational 
actions of behavior in rats via an effect on the HPA, 
could have a similar potentiating effect on epigeneti-
cally induced transgenerational imprints as well as 
on genetic predisposition to develop disease. Indeed, 
glucocorticoid receptor regulates DNA methylation 
within a key enhancer of the rat liver-specific tyrosine 
aminotransferase gene, resulting in rapid chromatin 
remodeling. This demethylated state is stable and 
results in an enhanced hormonal response to gluco-
corticoids on additional exposure.53 An intriguing 
recent finding concerns differences in D2 Dopamine 
Receptor (DRD2) variants in PTSD patients that 
are co-morbid for anxiety, social dysfunction, and 
depression; methylation plays a role in DRD2 ex-
pression.54-58

Finally, perhaps the best evidence for epigenetic 
influences in affective disorders comes from studies 
of Monozygotic (MZ) twins.2,59 In such instances, the 
concordance rate for both of the twins to suffer from 
an affective disorder is higher than that observed in 
dizygotic twins or sib pairs (e.g. schizophrenia-70% 
and autism-60%). The fact that it is not complete is 
of interest but outside the scope of this brief review. 
Epigenetic MZ twin differences have been identified 
that vary with age, but also between twin pairs.60,61 
For example, the Catechol-O-Methyltransferase 
(COMT) gene is located on chromosome 22q11, a 
region implicated in the etiology of schizophrenia.62 
Mill et al. studied the concordance rate for CpG 
methylation in the promoter region of this gene in 12 
5-year-old MZ twin pairs discordant for birth weight, 
finding a range of concordance from <1 to 42%.63 
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span conventional divisions, in mammals the usual 
classification is prenatal (intrauterine), postnatal (until 
weaning), adolescence (after weaning), peripubertal, 
sexual maturity, and reproductive senescence. Each 
period has its own characteristic ethologies and par-
ticular contribution to the behavioral phenotype. It 
is possible to deconstruct early life events and study 
each period both in its own right and how it interacts 
with the other stages.

In the field of behavioral neuroscience, complex 
behavioral traits are typically studied in the adult 
organism. In mammals, the formative environment 
for social and anxiety-related behaviors is the fam-
ily unit; in the case of rodents, this is the litter and 
the mother-young bond.25,74,75 Normally, investiga-
tors utilize individuals without consideration of the 
litter in which they were born. However, the litter 
is a structured unit involving the mother and her 
life history as well as the pups as they interact with 
one another and with the mother and research has 
demonstrated how much of adult behavior has its 
antecedents early in life.

A deciding factor in this environment is the sex 
ratio of the litter and, in the case of mice lacking 
functional copies of gene(s), the ratio of the various 
genotypes in the litter. Recent studies have decon-
structed these two confounds and demonstrated that 
they have separate and distinct effects on the nature 
and quality of the individual’s behavior later in adult-
hood, as well as on the metabolic activity in brain 
nuclei related to these behaviors.73,76,77 The finding 
that functional neural systems can be re-organized, 
depending upon the composition of the litter in which 
the individual develops, is startling. Yet it yields a 
deeper understanding of how neural systems are 
organized early in life.

Normally, litter composition reflects the sex ratio 
produced at birth, but there is evidence that prenatal 
environment (who your fetal neighbors are) and the 
postnatal period (the nature and quantity of maternal 
care) affect the adult behavioral phenotype. However, 
in none of these studies have these two periods been 
disassociated. Specifically, research demonstrat-
ing that the intrauterine sex ratio influences adult 
behavior failed to control for sex ratio of the litter 
postnatally. Similarly, research demonstrating that 

the sex ratio of the litter influences maternal behavior 
has not taken into account the prenatal sex ratio of 
the pregnant mother.

However, and contrary to the literature, decon-
structing these sequential experiences reveals that 
it is the sex ratio of the litter postnatally that affects 
sexuality in adult males, not intrauterine position or 
maternal behavior.73,78 After controlling for prenatal 
sex ratio, we find that males raised in female-biased 
litters exhibit less mounting compared to males raised 
in litters of equal sex ratio or in male-biased litters. 
Further, males from female-biased litters are less 
attractive to sexually receptive females. These dif-
ferences are not erased by sexual experience, sug-
gesting that the effects of the sibling environment 
are permanent. Surprisingly, these males compensate 
for their lower attractiveness by being more efficient 
copulators.

In genetically-modified mice, not only is the sex 
ratio of the litter an issue but the ratio of the various 
genotypes is an equally important variable, particularly 
in model systems that are the result of the mating of 
Heterozygotes (HTZ) to yield litters of varying num-
bers of Wildtype (WT), HTZ, and Knockout (KO) 
young of both sexes. Typically, researchers using KO 
mice do not control for the early social environment 
of their experimental animals. This is a mistake since 
this early social environment has a powerful effect on 
shaping the adult behavioral phenotype and brain. A 
common mouse model is the Estrogen Receptor α 
(ERa) knockout that lacks a functional copy of this 
important sex steroid receptor. Not only has research 
revealed the role of this gene in differentiation of 
morphology and physiology but distinct behavioral 
phenotypes have also been characterized. The ques-
tion is, to what extent are the behavioral phenotypes 
due to the absence of the gene or to the litter in which 
the individual develops.

Not only is it possible to distinguish males and 
females on the day of birth but it is also possible to 
genotype each individual in the litter using PCR to 
distinguish WT, HTZ, and KO individuals. Using 
this approach litters were reconstituted to control 
for sex ratio and genotype ratio.76,77 Results indicate 
that sex and genotype of siblings in the litter affected 
aggressive behaviors as well as patterns of metabolic 
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activity in limbic nuclei in the social behavior network 
later in adulthood. Moreover, this pattern in males 
varied depending upon the genotype of their brothers 
and sisters. Principal components analysis revealed 
two components comprised of several amygdala and 
hypothalamic nuclei; the Ventromedial Hypotha-
lamic nucleus (VMH) showed strong correlations 
in both clusters, suggesting its pivotal nature in the 
organization of the two neural networks. For example, 
WT females spend significantly more time in social 
contact in a Resident-Intruder test compared to KO 
females raised in same-sex, same-genotype litters. 
Further, it appears that female WT siblings are able 
to compensate for this deficit, just as KO siblings 
cause a deficit in WT females.

Cytochrome Oxidase (CO) histochemistry is a 
particularly useful tool for studies of the long-term 
effects of significant life history events. The abundance 
and activity of CO in a brain area is a measure of the 
metabolic capacity of that brain region. In other words, 
the CO abundance not only reflects the metabolic his-
tory of an area but, because it determines the amount 
of ATP available in a neuron, constrains the amount 
of activity a neuron can sustain.79 Using this tool, we 
find that the neural networks that subserve sociosexual 
behavior vary in different ways. First, there is a sig-
nificant genotype difference in the neural network of 
WT and KO mice and the compensation/deficit in the 
behavior are reflected in the metabolic activity of the 
neural circuit. The relative effects of sex, independent 
of genotype, and of genotype, independent of sex, 
are striking. Taken together, these findings indicate 
that in studies with genetically modified mice, the 
litter composition during the pre-weaning period 
must be considered as it can effect the development 
of behavior and the neural network responsible for 
the regulation of emotional behaviors.

tRansGeneRational epiGenetic 
pRoGRamminG of the bRain 
tRanscRiptome and anxiety behavioR

Michael Skinner and colleagues have developed 
a rat model in which the male germline bears a 
permanent epigenetic imprint, thereby creating an 
epigenetic transgenerational phenotype that is not 

Context-dependent.80-83 This demonstrates that expos-
ing gestating female rats to Vinclozolin during the 
period of sex determination induces an epigenetic 
transgenerational phenotype through reprogramming 
the germline in a sex-specific manner. Specifically, 
in each generation males whose ancestor had been 
treated showed accelerated onset of adult diseases 
such as cancer, prostate disease, kidney disease, and 
immune defects. The appearance of a series of new 
imprinted-like genes that transgenerationally transmits 
this altered epigenome to promote disease phenotypes 
appear not only in the sperm epigenome but also 
in the brain epigenome.82,83 Recently, a Germline-
Dependent epigenetic modification effect on mate 
preference has been demonstrated.84

The transcriptomes of the whole brain, amygdala, 
and hippocampus of these same F3 generation Vin-
clozolin-lineage and Control-lineage males show the 
same trends in expression with the COMT microarray 
results, demonstrating a decrease in all the vinclozolin 
gene sets in both the amygdala and hippocampus, but 
to a lesser extent in the latter.85 Hundreds of genes 
have altered expression in a transgenerational manner. 
Of these, a limited number show similar changes in 
the whole brain, amygdala, and hippocampus. Genes 
common to all three include Senp5 (SUMO/sen-
trin specific protease 5), Nfix (Nuclear factor I/X), 
Akap5 [A kinase (PRKA) anchor protein 5], NTrkb 
(Neurotrophic Tyrosine kinase receptor) and COMT, 
the latter three genes having been implicated in the 
etiology of schizophrenia and other affective disor-
ders including autism and depression.62,86-89 Camk2a 
(calcium/calmodulin-dependent protein kinase II 
alpha subunit) was also regulated in the amygdala 
and hippocampus, this being a gene implicated ef-
fect in both learning and memory and stress-induced 
anxiety behavior.90,91

Vinclozolin-lineage males spent more time in the 
light compartment and had more transitions than did 
control males. In the Elevated Plus maze, there was 
no difference between the lineages in % open arm 
time and entries, but with significantly greater total 
arm entries for the Vinclozolin-lineage males.85 Taken 
together, these studies indicate that the epigenetic 
transgenerational phenotype has a permanent altera-
tion in the brain transcriptome in a manner that can 
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influence behavior and genes implicated in anxiety-
related disorders, learning, and memory.

Surveying the recent literature for genes implicated 
in mental disorders reported by multiple laboratories 
and comparing it with our brain transcriptome analysis 
reveals that in the whole brain AUTS1 (candidate 
gene in region of chromosome 7 known as autism 
susceptibility locus 1) and Grik2 (Glutamate recep-
tor, AMPA1) are decreased, while SLC6A4 (Serot-
onin transporter gene), Gria1 (Glutamate receptor, 
kainite 2), and S100 (calcium binding protein A4) 
are increased; the latter gene also shows a specific 
increase in the amygdala. Interestingly, AUTS2 (autism 
susceptibility locus 2 or engrailed homolog- EN2- in 
the rat) is not affected.24,92-95 (AUTS1 remains a strong 
candidate gene involved in autism, but AUTS2 is no 
longer considered to be so.95) Thus, it is significant 
that the AUTS1 and AUTS2 candidate genes map 
to the chromosome 7q location, the same region as 
Candidate gene 23 described by Chang et al; further, 
AUTS1 is reduced by the Vinclozolin-lineage males, 
but not AUTS2.83 The amygdala also showed an 
increase in expression in BDNF, DRD2, and S100. 
The increases in BDNF and DRD2 in amygdala 
are significant as the former has been implicated in 
Alzheimer’s disease, affective disorders, posttraumatic 
stress disorder, schizophrenia, and substance depend-
ence, while the latter has been implicated in PTSD, 
anxiety, social dysfunction, and depression.54,96

It is potentially instructive that a number of genes 
in the same literature were not found to be different 
in the Vinclozolin imprinted rat. For example, the 
gene RELN is downregulated in the schizophrenic 
brain and it has been suggested that this is due to 
hypermethylation of the RELN promoter.97,98 There is 
no evidence that the Vinclozolin-lineage male brain 
is different from the control-lineage male brain in 
this regard. The stability of these genes in face of 
epigenetic imprinting will enable them to be used as 
benchmarks for the effects of stress. Finally, other 
genes that have been implicated in autism and related 
affective disorders such as MECP2, GAD67, and 
IMMP2L (= IMP2) are not on the Affymetrix chip 
RAT230-2.0 used and so could not be evaluated. At 
this point there does not appear to be a rat homolog 
for NLGN4.99

conclusions

The way the genetic background modifies re-
sponses to experiences throughout the life cycle can 
ultimately determine an individual’s susceptibility 
to developing affective disorders. Recently, it has 
been discovered that early experiences can modify 
regulatory factors affecting gene expression in such a 
way that the DNA sequence itself is not changed but 
for generations afterwards an individual’s physiology 
and behavior are substantially influenced. How this 
epigenetic modification can modulate the interaction 
of the environment and genetic constitution at the 
level of the brain, ultimately influencing agonistic 
and anxiety behaviors, is the next frontier.
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